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Abstract. Data for D∗±(2010) meson electroproduction in the range 10 < Q2 < 1350 GeV2 has recently
been presented by the ZEUS collaboration at HERA. We use these results together with previously pub-
lished data for Q2 > 1 GeV2 to test whether one can distinguish between different theoretical schemes for
charm quark electroproduction. We find that up to the largest Q2 measured, it is not possible to make
such a differentiation. Then we point out the regions where differences between the various schemes arise.

1 Introduction

Electromagnetic interactions have long been used to study
both hadronic structure and strong interaction dynam-
ics. Examples include deep inelastic lepton-nucleon scat-
tering, hadroproduction of lepton pairs, the production
of photons with large transverse momenta, and various
photoproduction processes involving scattering of real or
very low mass virtual photons from hadrons. In particular,
heavy quark production in deep inelastic electron-proton
scattering is calculable in QCD and provides information
on the gluonic content of the proton which is complemen-
tary to that obtained in direct photon production or struc-
ture function scaling violation measurements. In addition,
the scale of the hard scattering may be large relative to
the mass of the charm quark, thus allowing one to study
whether and when to treat the charm quark as a massless
parton. It is this second aspect we wish to examine further
in this paper.

The photon-gluon fusion mechanism is the simplest
description of charmed quark electroproduction so that
their production is assumed extrinsic, and their mass mc

is retained throughout. We call this description fixed or-
der perturbation theory (FOPT). It depends on a three-
flavor set of parton densities for the u, d, and s quarks
together with a corresponding gluon density. Calculations
for rates and single particle inclusive distributions are
available to next-to-leading order (NLO) in [1]. These cal-
culations were later redone to cover fully differential pro-
duction [2], and decays into hadronic or semileptonic fi-
nal states [3]. This framework generally provides a very
good description of the ZEUS [4] and H1 data [5] on the
differential distributions for D∗±(2010) electroproduction.
Updated analyses now exist from H1 [6] and ZEUS [7].

The ZEUS data [7] now extend up to Q2 ≈ 1000 GeV2.
Since the FOPT results in NLO are very stable under scale
changes it has been advocated that a three-flavor descrip-
tion should be the best one to fit the data [8,9]. This is
the reason that the GRV98 leading order (LO) and NLO
density sets [10] only contain three flavors.

Other descriptions of charm quark electroproduction
have been used. One, which describes the charm quark
as a massless parton density c(x, µ2), with the boundary
condition c(x, µ2) = 0 for µ ≤ mc, is expected to be more
appropriate at large Q2. This scheme has generally been
used by groups which fitted parton densities to data and is
called the zero-mass variable flavor number scheme (ZM-
VFNS). The transition from a three-flavor parton density
set to a four-flavor set can be made on purely theoretical
grounds by evaluating appropriate massive and massless
operator matrix elements containing heavy quark loops in
the operator product expansion and then absorbing the
terms containing lni(Q2/m2

c) into the definition of four-
flavor parton densities [11], [12]. The resummation of the
above logarithms is incorporated into the boundary con-
ditions on the c−quark density as well as the other four-
flavor quark and gluon densities. In particular if one does
this at the scale where µ2 = Q2 = m2

c then all the loga-
rithmic terms in the operator matrix elements vanish and
only the non-logarithmic terms are included in the bound-
ary conditions. Since a charm quark density is a parton
model concept the QCD perturbation series then starts
with α0

s coefficient functions. The lowest order photon-
gluon fusion reaction then has O(αs) coefficient functions.
The NLO corrections contain O(α2

s) coefficient functions.
When the resulting four-flavor parton densities are con-
volved with the massless coefficient functions in [13] one
obtains predictions for the charm content in the deep in-
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elastic structure functions. One expects this four-flavor
ZM-VFNS description to be better than the FOPT one at
large scales since it resums the terms in lni(Q2/m2

c).
Another approach, which is even more ambitious, is a

scheme designed to interpolate between the FOPT result
at low scales and the ZM-VFNS result at large scales. In
these variable flavor number schemes (VFNS) one hopes to
provide a unified framework for all scales. Unfortunately
there is no unique prescription for a VFNS and several
have been constructed. The differences between them are
due to two inputs. The first is the mass factorization pro-
cedure carried out before the large logarithms can be re-
summed, namely should one retain massive or massless
charmed quarks in the coefficient functions, which are con-
volved with either the three-flavor or four-flavor parton
densities. The second is the matching condition imposed
on the charmed quark density, namely how does it van-
ish in the threshold region of the electroproduction pro-
cess, where the partonic subenergy is approximately 4m2

c .
Variable flavor number schemes are presently available to
O(αs) in [14–17] and to O(α2

s) in [18,19], called BMSN
and CSN, respectively, in this paper. The latter schemes
require the parton densities provided in [12]. Review arti-
cles and discussions about VFNS schemes are available in
[20–23].

In Sect. 2 we give a short discussion of the BMSN
and CSN descriptions for charmed quark electroproduc-
tion and then compare theoretical predictions with differ-
ential distribution data from H1 [6] and ZEUS [4,7].

2 Comparison

The reaction under consideration is heavy quark Q pro-
duction via neutral-current electron-proton scattering

e−(l) + P (p) → e−(l′) +Q(p1) +X. (2.1)

We concentrate on the case where Q is a charm quark
with mass mc = 1.4 GeV. When the momentum transfer
squared Q2 = −q2 > 0 (q = l − l′) is not too large, Q2 �
M2

Z , the contribution from virtual Z-boson exchange is
small compared to that of virtual-photon exchange. For
example, using the leading order Monte Carlo program
AROMA [24], at Q2 = 1000 GeV2 we find the Z-boson
exchange contribution is a factor of 100 smaller than the
photon exchange contribution.

The charm quark cross section can be written in terms
of the structure functions F c

2 (x,Q
2,m2

c) and F c
L(x,Q

2,
m2

c) as follows:

d2σ

dydQ2 =
2πα2

yQ4 {[1 + (1− y)2]F c
2 (x,Q

2,m2
c)

−y2F c
L(x,Q

2,m2
c)} , (2.2)

where x = Q2/2p · q and y = p · q/p · l are the usual
Bjorken scaling variables and α is the electromagnetic cou-
pling. The scaling variables are related to the square of the
center-of-momentum energy of the electron-proton system

S = (l+p)2 via xyS = Q2. The total cross section is given
by [25]

σ =
∫ 1

4m2
c/S

dy

∫ yS−4m2
c

m2
ey2/(1−y)

dQ2
(

d2σ

dydQ2

)
, (2.3)

where me is the electron mass. In deriving (2.2) one in-
tegrates over the azimuthal angle between the plane con-
taining the incoming and outgoing electrons and the plane
containing the incoming proton and the outgoing charm
quark.

Experimentally it is the decay products of charmed
hadrons that are observed. The H1 and ZEUS groups mea-
sure D∗±(2010) production. We assume a Peterson et al.
[26] fragmentation function to model the nonperturbative
transition from charmed quark to hadron. The cross sec-
tion for D∗ production is then obtained by convolving the
charm quark cross section (2.3) with the fragmentation
function

D(z) =
N

z[1− 1/z − ε/(1− z)]2
(2.4)

where N is fixed such that D(z) is normalized to unity
once the parameter ε = 0.035 [27] is fixed. The normal-
ization of the cross section is then given by the charm
fragmentation probability which we take as P (c → D∗) =
0.235 [28].

The H1 Collaboration has recently [6] measured D∗±

production for 1 < Q2 < 100 GeV2 and 0.05 < y < 0.7
and quote a cross section in the region 1.5 < pT (D∗) < 15
GeV and |η(D∗)| < 1.5 of

σ(e+p → e+D∗±X) = 8.37± 0.41(stat.)+1.11
−0.82(syst.) nb .

(2.5)

The data came from the 1996-97 run with proton energy
820 GeV and positron energy 27.5 GeV (18.6 pb−1).

The ZEUS Collaboration has recently [7] measured
D∗± production for Q2 > 10 GeV2 and 0.04 < y < 0.95
and quote a cross section in the region 1.5 < pT (D∗) < 15
GeV and |η(D∗)| < 1.5 of

σ(e+p → e+D∗±X)

= 2.33± 0.12(stat.)+0.14
−0.07(syst.) nb . (2.6)

The data came partly from the 1999-2000 run with pro-
ton energy 920 GeV (45.0 pb−1) and partly from the
1995-1997 run with proton energy 820 GeV (37.6 pb−1).
In both cases the positron beam energy was 27.6 GeV.
They demonstrated [7] that the predictions from HVQDIS
[3], which is based on FOPT, agree with their D∗± elec-
troproduction data up to the highest measured value of
Q2 ≈ 1350 GeV2.

Previously in [4] they presented the 1996-1997 positron
production data (37 pb−1) for D∗± in the range 1 < Q2 <
600 GeV2 and 0.02 < y < 0.7 in the same kinematic range
1.5 < pT (D∗) < 15 GeV and |η(D∗)| < 1.5 with the cross
section

σ(e+p → e+D∗±X)

= 8.31± 0.31(stat.)+0.30
−0.50(syst.) nb . (2.7)
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Therein [4] they also concluded that the HVQDIS [3] re-
sults agree with their data, apart from a distortion of
the pseudo-rapidity distribution. This was attributed to
a beam drag effect [29], which was estimated by Monte
Carlo [30]. Still FOPT seemed to be the best model to fit
their data.

The BMSN [18] and CSN [19] variable flavor number
schemes were constructed so that the charm quark struc-
ture functions F c

2 (x,Q
2,m2

c , µ
2) and F c

L(x,Q
2,m2

c , µ
2) are

numerically equal to the corresponding FOPT results at
the scale µ2 = m2

c = Q2 = 1.96 GeV2, so the differences
between the them could be monitored at higher scales. For
this reason we chose the scale µ2 = m2

c+
1
2Q

2(1−m2
c/Q

2)2

and set the charm density to zero when µ2 < m2
c . Also we

used the exact solution of the differential equation for the
QCD running coupling (αs) as well as an electromagnetic
running coupling (α). The QCD expansion was truncated
at α2

s. Therefore we were careful to construct the structure
functions in the FOPT, BMSN and CSN schemes accord-
ing to the symbolic formula

F (x,Q2,m2
c)

= f(LO)⊗ C(LO)
+αs[f(NLO)⊗ C(LO) + f(LO)⊗ C(NLO)]
+α2

s[f(LO)⊗ C(NNLO) + f(NLO)⊗ C(NLO)
+f(NNLO)⊗ C(LO)] , (2.8)

where the ⊗ symbol refers to the convolution integral
and the parton densities f and coefficient functions C are
taken in either LO, NLO or next-to-next-to-leading order
(NNLO) perturbation theory. Note that this result is dif-
ferent from the usual FOPT prescription which is based
on expressions like

F (x,Q2,m2
c)

= [f(LO) + αsf(NLO) + α2
sf(NNLO)]

⊗[C(LO) + αsC(NLO) + α2
sC(NNLO)] . (2.9)

These prescriptions retain terms which are even higher
order in αs. Normally it does not matter if such terms
are retained because they are numerically unimportant at
large Q2. However such terms are numerically significant
at small Q2 and ruin the cancellations among the vari-
ous terms in our formulae for the structure functions in
the three schemes with the result that they do not agree
numerically at Q2 = µ2 = m2

c . Therefore we have to use
(2.8) and not (2.9). Even our FOPT (extrinsic) expres-
sion, called EXACT in this paper, only retains the sec-
ond and third sets of terms in (2.8) and agrees with the
corresponding results from the (appropriately modified)
HVQDIS code.

The difference between the BMSN and CSN schemes
is that the former has mc = 0 in the heavy quark coef-
ficient functions while the latter retains terms containing
mc. We refer the reader to [19] for more details, in partic-
ular the definition of the collinear safe inclusive structure
functions and the contributions which are incorporated
into the light mass (u, d, s) contributions to the coeffi-
cient functions. Our previous theoretical results showed

that differences between the EXACT, BMSN and CSN
schemes in LO perturbation theory diminish substantially
in NLO perturbation theory. Such differences are more ap-
parent for b-quark electroproduction in [31] but there are
no events yet.

The aim of this paper is to compare our results with
the data. Since there are no VFNS schemes available for
differential distributions in the transverse momentum and
rapidity of the D∗ meson in O(α2

s) we make the assump-
tion that the experimental acceptances do not differ much
between these schemes and FOPT. We have therefore re-
calculated the experimental acceptances from the
HVQDIS program with the above scale choice, running
coupling constant and GRV98 [10] three-flavor parton den-
sity set. This is appropriate for the FOPT result, which
we called EXACT in our papers on the BMSN and CSN
schemes. Our acceptances in Q2 are slightly modified from
those used by the Collaborations. The acceptances in Q2,
from integrating (2.2) over 0.04 < y < 0.95, 0.05 < y <
0.7, or 0.02 < y < 0.7 are nearly identical, so we do not
distinguish between them. The corresponding acceptances
in x, however, from integrating (2.2) over 10 < Q2 < 1350
or 1 < Q2 < 600 and the corresponding y ranges are dif-
ferent and we distinguish between them. We start with the
recent data from the Osaka meeting [6,7]. The results for
the ratio σ(cuts)/σ(no cuts) are presented in Figs. 1 and
2 plotted versus log10Q

2 and log10x respectively. These
plots demonstrate the large corrections necessary to in-
clude the experimental acceptances. The corrections were
applied to the corresponding differential cross sections cal-
culated from the structure functions given in the CSN
[19] and BMSN [18] papers. Here we used our own set of
densities [12] which are based on the three-flavor GRV98
densities at scales below µ = mc, but which incorporate
the discontinuity across the c−flavor threshold at µ = mc

to define a four-flavor set both in O(αs) and in O(α2
s)

together with their subsequent evolution to higher scales
with NLO splitting functions.

The resulting differential cross sections in log10Q
2 are

compared with the H1 and ZEUS data in Figs. 3 and 4.
We see from Fig. 3 that the FOPT is a good fit to the data
at large Q2. This is in agreement with the conclusions of
the ZEUS Collaboration in [7]. It is difficult to distinguish
the BMSN and CSN results from the FOPT ones because
there is only a 4% difference even at this large Q2. Clearly
it will take a substantial increase in the number of events
to distinguish between the schemes at large Q2. All we
can say at present is that the terms containing powers of
ln(Q2/m2

c) do not seem to lead to different predictions.
One can see from the semi-logarithmic plot in Fig. 4

that all curves meet at Q2 = m2
c = 1.96 GeV2, which is

expected from the construction of the BMSN and CSN
schemes. There are differences between the three schemes
in the region of small Q2, however the currently available
data is unable to resolve them. We understand that the
events with Q2 < 10 GeV2 and with Q2 > 10 GeV2 are
measured in different regions of the ZEUS detector and
the events accumulated in 1999-2000 in the former region
have not been analyzed. Note also that the bin widths
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Fig. 1. The ratio σ(cuts)/σ(no cuts) for the acceptance in Q2

plotted versus log10Q
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Fig. 2. The ratio σ(cuts)/σ(no cuts) for the acceptance in x
plotted versus log10x

in this region are not the same. More data for small Q2

would clearly be very useful.
The resulting differential cross sections in log10x are

compared with the new ZEUS data [7] in Figs. 5 and 6.
We see from Fig. 5 that there is good agreement over a
wide range in x. The semi-logarithmic plot in Fig. 6 shows
a small disagreement between the FOPT theory result and
the data in the region x ≈ 10−3. However the normaliza-
tion is determined mainly by the magnitude of differential
cross section at the lowest measured point in Q2, which is
precisely where additional data is required.

Integrations over the theoretical results displayed in
Figs. 3–6 for 10 < Q2 < 1350 GeV2 and 0.04 < y < 0.95
yield 2.86 nb, 2.51 nb and 2.48 nb for the FOPT, BMSN
and CSN schemes respectively. The latter two results are
within the error bars of the experimental result in (2.6)
while the FOPT result is slightly higher.

The previous published ZEUS data in [4] had differ-
ent cuts in Q2 and y, namely 1 < Q2 < 600 GeV2 and
0.02 < y < 0.7 which affect the normalization of the
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Eur. Phys. J. C12 (2000) 35: ZEUS 96-97
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Fig. 3. The combined Osaka H1 and ZEUS and published
ZEUS data for dσ/d log10Q

2 in nb for deep inelastic production
of D∗± mesons. The dashed line is the NLO EXACT result
from HVQDIS, (which coincides with the FOPT result), the
dotted line is the result from the BMSN scheme and the dot-
dashed line is the result from the CSN scheme
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Fig. 4. Same as Fig. 3 displayed on a semi-logarithmic plot

corresponding x distribution. Therefore we reran the ac-
ceptance in log10x from the HVQDIS program and it is
shown in Fig. 7. We then applied the same acceptance to
the other programs. The BMSN and CSN results between
1 < Q2 < 1.96 GeV2 are set equal to the EXACT result.
Our results are compared to the data in Figs. 8 and 9.
The overall shape and normalization are well described.
Integration over the results in Fig. 8 yield 9.29 nb, 8.43
nb and 8.55 nb for the FOPT, BMSN and CSN schemes
respectively compared to the experimental results in (2.5)
and (2.7).

We have run our computer codes in other ranges of
the variables log10Q

2 and log10x to find where differences
between the three schemes might be measurable. As an
illustration we show in Fig. 10 a contour plot of the ratio
of the BMSN double differential cross section divided by
the FOPT double differential cross section plotted versus
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Fig. 5. The Osaka ZEUS data for dσ/d log10x in nb for deep
inelastic production of D∗± mesons. The dashed line is the
NLO EXACT result from HVQDIS, (which coincides with our
FOPT result), the dotted line is the result from the BMSN
scheme and the dot-dashed line is the result from the CSN
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Fig. 8. The published ZEUS data for dσ/d log10x in nb for
deep inelastic production of D∗± mesons. The notation follows
Fig. 5
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Fig. 9. Same as Fig. 8 displayed on a semi-logarithmic plot

these variables. Contour lines are drawn where this ratio
is 1, 1.5, 2, 2.5 and 3. The ratio increases as Q2 increases
for fixed x. Note that no acceptance corrections in pT or
η have been applied to the ratio in this figure. One sees
that the region of large Q2 and large x must be probed
to find significant differences between FOPT and the vari-
able flavor number schemes. Roughly speaking one needs
x > 0.2 and Q2 > 100 GeV2. In fact Fig. 5 in [32], which
only shows the Q2 dependence of the structure function
F c

2 (x,Q
2,m2

c) at fixed values of x, already illustrates the
kind of differences one can expect in this region.

Finally we remark that as far as the FOPT result is
concerned the standard version of HVQDIS uses the scale
µ2 = Q2 + 4m2

c . This increases the scale in the running
coupling. Also it uses the second and third lines of (2.9)
with all parton densities set to their three flavor NLO
values. These standard settings alter slightly the above
acceptance curves. The net effect of both changes is ap-
proximately a ten percent reduction of the FOPT results
(using GRV98) for the differential distribution in log10Q

2
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Fig. 10. Ratio of the double differential cross sections in
log10Q

2 and log10x for the BMSN scheme divided by the FOPT
result. The contour lines are for the ratio 1, 1.5, 2, 2.5 and 3
in the order of increasing Q2 for fixed x

at the smallest Q2, which is within the present experimen-
tal errors.

To summarize we have made a first comparison be-
tween the FOPT, BMSN and CSN descriptions for D∗±
electroproduction. We have observed that the three
schemes give nearly identical predictions up to the high-
est Q2 measured. It is therefore difficult to distinguish
between the various schemes on the basis of a data com-
parison. The small scale dependence of the FOPT result
indicates that there is no sign that the terms containing
powers of ln(Q2/m2

c) destroy the convergence of the QCD
perturbation expansion and that one is forced to switch to
a variable flavor number scheme like the BMSN or CSN.
In fact they all provide a good description of the data
for the differential distributions in Q2 and x. At small Q2

there is a chance to distinguish between the schemes (say
for 2 < Q2 < 20 in GeV2). The comparisons in the case of
the x-distributions are not conclusive due to the correla-
tions with the points in small Q2. It will be interesting to
see what happens when more events are collected so that
the error bars are reduced.
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